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Progressive internal waves on slopes 
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Depsrtment of Geology and Geophysics, Massachusetts Institute of Technology, 

Cambridge, Massachusetts 
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The refraction of progressive internal waves on sloping bottoms is treated for the 
case of constant Brunt-Vaisala frequency. In  two dimensions simple, explicit 
expressions for the changing wavelengths and amplitudes are found. For small 
slopes, the solutions reduce to simple propagating waves at  infinity. 

The singularity along a characteristic is shown to be removable, though the 
solutions are now inhomogeneous waves. The viscous boundary layers of the 
wedge geometry are briefly considered with the inviscid solutions remaining as 
interior solutions. 

A theory valid for small slopes is obtained for three-dimensional waves. The 
waves are refracted in the usual manner, turning parallel to the beach in shallow 
water. 

1. Introduction 
In  a recent note (Wunsch 1968, which we will call (I)), it was shown that in an 

inviscid Boussinesq fluid of constant Brunt-Vaisala frequency, the expressions 
for the propagation of two-dimensional internal waves up a sloping ‘beach ’ took 
on a particularly simple form. Attention in (I) was focused on the standing modes 
of a wedge with rigid upper and lower boundaries. 

In subsequent attempts to reproduce the results experimentally a propagating 
mode solution appeared to be more appropriate and more in accord with the few 
oceanic observations available. Furthermore, the line of high shear predicted 
by the standing wave solutions was never reproduced in the laboratory. The 
purpose of this discussion is to examine the propagating solutions of a wedge 
geometry. In  particular we show that the characteristic singularity is removable 
with an inviscid theory. The possible viscous corrections to the solutions will be 
briefly examined. Finally, the theory is extended to the problem of the refrac- 
tion of three-dimensional internal waves on slopes, valid in the limit of small 
slopes. 
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form : 

2. Progressive waves 
In a Boussinesq fluid of mean densitypo(z), the perturbation equations take the 

p’ is the pertur ,ation density. We assume a time-dependence e-iut. 
It was shown in (I) that within rigid boundaries defined by z = 0, z = - yx,  

x > 0, exact two-dimensional inviscid solutions existed in the form of standing 
waves. In terms of a stream function +, 

+zg-c-?$!9xx = 0 (6) 
2nr 2nn 

$-4 = sin - In (cx - z )  - sin - In (cx + z ) ,  In A In A and 

2nn 2nn 
In A In A = - cos ~ In (cx- z )  + cos- In (cx + x ) ,  

(7)  

where 
8 C f Y  c~ = ~ N Z  = - poz = constant, n = integer, A = ~ 

A12 - (TZ ’ Po c -  y ‘  

If the fluid is rotating, and the wave propagation remains two-dimensional, 
c2 becomes simply (@ - f Z ) ) l ( P  - d),  the solutions being otherwise unchanged. 

These are not the only standing waves but appear to be the simplest and most 
easily interpretable. They are singular along the line x = - cx (corresponding to 
a ‘critical angle’ a = tan-1 1/c).  Perhaps it should be pointed out that (7) are 
also solutions exterior to a wedge, with singularities along the lines x = -cx 
and2 = +cx. 

If we restrict our attention for the moment to wedge angles less than the critical 
angle (we will call this a ‘subcritical wedge’), then we can make up two propa- 
gating solutions out of the standing solutions. We have 

+~; = ;+A - $B = A+[exp {iqln (cx - z ) }  - exp {iqln (cx + z )}] ,  (8) 

(9) 

where A+ and A- are constant, q = 2nn/lnA. 
The phase velocities (and as we shall show, the energy flux) of these two solu- 

tions are down-slope and up-slope respectively. That they satisfy the boundary 
conditions y!! = 0 on the walls, can be seen from 

+- = + $!9B = A-[exp{ - iqln (cx- z ) }  -exp { - iqln (cx+ x ) } ] ,  
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The singularity at  x = x = 0 remains. The $- solutions appear to be the most 
interesting physically, so we shall concentrate attention upon them. The changes 
for the $+ solutions are obvious. One of the modes is shown in figure 1. The 
structure of these waves is similar to the standing modes, and reference is made 
to (I) for further illustrations. Related solutions have been given by Magaard 
(1962) and Sandstrom (1966).t 

0 10 20 

z (arbitrary units) 

FIGURE 1. Mode 1 of the case c = 1.0, y = 1/10, showing horizontal and vertical particle 
velocities along the dashed line. The horizontal velocity is shown at 1/10 scale. Not0 the 
decrease in wavelength as the corner is approached, and the increase in amplitude. 
(Z = -0.5.) 

The relationship between these wedge solutions and the classical solutions 
(Lamb 1932, p. 738) in a flat-bottomed fluid is not obvious. In  fact, for small 
slopes, they are asymptotically the same, the wedge solutions reducing to simple 
propagating waves at  infinity. 

Consider a shalIow wedge, expressed by the condition ylc < 1. Then we have 

Far from the corner where cx 4 z, we have approximately, 

t After this work was completed, i t  was pointed out to me by Prof. Harvey Greenspan 
that he had solved an analogous problem for a vibrating string in Greenspan (1963). 
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The local x wave-number k, is 

Ic, = d/dx (nync -ln(cz) ):  = -. 
The depth of the fluid is h = yz; locally we have 

which is the solution for a flat-bottom. Hence in the shallow wedge, it is easy to 
make the correspondence between a mode in a flat region, and the equivalent 
mode in a shelving region. 

FIGURE 2. The wave-number change of the upward and downward propagating waves of 
a given mode. The downward wave-number goes to  inSnity at the critical angle. 

Returning to the wedge itself, it  is useful to examine the local wave-numbers. 
Solution (9) is made up of two propagating waves with local wave-numbers 

The x-component of both of these wave-numbers is negative, hence the phase 
velocity is up-slope. With z negative, the x component of k, is positive, hence 
propagation is upward; the z component of k, is negative, and the z-phase 
velocity is downward. A t  z = 0, lkll = Ik,l. At z = -yx, lkll < lkzl and as 
y -+ c, I k,l+ a. The relationships are shown in figure 2. The relative magnitudes 
of k, and k2 can be shown to satisfy the reflexion conditions discussed by Phillips 
(1966), for reflexion from horizontal and sloping surfaces. 

3. Critical angle singularity 
The singularity at z = - cx, can be traced to the growth of the k, wave-number. 

The line z = - cx is a branch point of In [, 6 = cx + z. If the wedge is supercritical, 
it is necessary to specify which sheet of the Riemann surface of the logarithm 
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is to be chosen for z + cx < 0. By the simple expedient of introducing an infinitesi- 
mally small amount of friction proportional to the velocity, we can make c 
complex. The independent variable 5 is then displaced off the real axis, and we 
find that we should choose 

ln(-ISI) =ln1[1+in 

to give a physically consistent result. 

boundary condition on the slope requires 
Suppose that y > c; q will now be complex and we write q = q+iS. The 

or 

We find 

and 

C-Y = 0, A‘ = - 
C+Y 

(n = integer). 

2nnln IA’I ’ = (In 1A’1)2+n2 
- 2nn2 

= (In lA‘1)2+n2’ (17) 

Note that we have chosen to use the quantity A‘ = (c-y)/(c+y) rather than 
A = (c + y)/(c - y). The stream function is 

+- = A-[(cx - z)Bexp { - iq In (cx - x ) }  - (ex + 2)s cxp { - iq In (cx + z)}].  (18) 

If we can make 6 a positive quantity, then the right-hand term of (18) will 
have a zero at  z + cx = 0,  cancelling the singularity. If n is thus supposed to be a 
negative integer, 6is positive and +-will be continuous. Note that since 

/A’/ < 1, 1nIA’l < 0, 

q is positive and the up-slope propagation sense is preserved. (The $+ solutions 
demand the retention of In I A1 .) 

The velocity field is 

w = +; = A_( -i(q+i6)(cx-z)~--lcexp{--iqln(cx-z)} 

ZL = - $; = - A-(i(q + i6) (cz - 2)a-l exp { - iq In (cz - z ) }  

+ i(q +is) (cz + ~ ) ~ - l c  exp { - iq In (cz + z)})  

+ i(7 + is) (cx + ~ ) ~ - l  exp { - iq In (cx + z)}) .  

(19) 

(20) 

and 

These are everywhere bounded if 6 > 1, i.e. 

or 

- 2nn2 
(InIA’l)2+n2 -1 > 0, 

-n  > (h I A ~ I ) ~  + g. J 
2n2 

The velocities are continuous if (21) is satisfied. If, in addition, we require that 
their fist. derivatives also be continuous, we arrive at  
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FIGURE 3. The in-phase vertical particlo velocity w atr selected places in the supercritical 
wedge y = 1.0, c = 0.5, for n = -2. The shear near the slope is pronounced. 
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FIGUEGE 4. The in-phase horizontal particle velocity u for the case ilkstrated in figure 3. 
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This assures that the advective terms of the equations of motion do not intro- 
duce a fictitious force into the modes. The (n+ 1)st or higher derivative of the 
velocity vector will always be discontinuous no matter how large n is chosen. 
Formally, as c -+ y from above, the minimum permissible value of n approaches 
minus infinity. If, in fact, discontinuous modes exist, then one expects that 
friction would effectively damp them out; hence this seems to be an unusual 
situation in which friction would require longevity in the high modes rather than 
the low. One expects that at  frequencies near critical, higher modes would be 
present in a system in preference to the low. However, this is speculation and 
may be pushing a simple theory too far. 

Unlike the subcritical solutions considered above and in (I), these supercritical 
modes are bounded in the corner; in fact, they are zero there. On the other hand, 
they grow algebraically as x, z+m. The region exterior to the wedge is also 
everywhere nonsingular, except a t  infinity. 

An example is shown in figures 3 and 4. The intensification on the bottom is 
very obvious. This can be traced back to the way the rays reflect from a slope. 

The direction of energy flux in these waves is of interest. The x-component of 
energy flux is 

where * denotes conjugation. This is 

&=I( 2 I, u *+P*4 ,  

I ,  = - p+4" exp{ -iqla (cx - z )  + ip* In* (cx- 2 ) )  2c ( ex-2 
q+q* + __ exp( - iqln (cx+z) + iq* In* (cx + z )]  cx+z 

q*(cx-2) +q(cx+z) 
- exp { - iq ln (cx - z )  + iq" In* (cx + z)> + c2x2-22 

exp {iq* In* (cx - z )  - iqln (cx + z)}  
q*(cx + 2 )  + q(cx - 2) 

+ cZxZ-$! 

Note that In (m - z )  is actually real. 
This is shown numerically in figure 5 for y = 1, c = 0.5 and n = - 2. The sign 

of the energy flux changes as the slope is approached, being up-slope far from 
the slope, and down-slope nearby. It is no longer possible to consider these as 
simple progressive waves, the polynomial coefficients rendering them rather 
complicated. Apparently the energy flux balancesin sucha way that all the energy 
is reflected before encountering the corner, rendering a singularity unnecessary. 
In  the solutions for subcritical angles given above, the flux is all up-slope and the 
corner singularity is required. 

It may be easily verified that in the limiting case of a right-angled corner, the 
solutions become 

the wavelength having become infinite. 

just the reverse of that for the @- solutions. 

@- = (c5 - z)-2n - (cx + z)-, 

Examination of the $+- solutions indicates that the sense of the energy flux is 
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FIGURE 5 .  The horizontal energy flux for y = 1.0, c = 0.5, w = - 2. 

4. Frictional boundary layers 
The inviscid steady equation governing the stream function is hyperbolic 

in the space co-ordinates. As was pointed out in (I), this is very unusual and can 
lead to paradoxes. For this reason, it is interesting to examine the viscous 
equations, which are not hyperbolic. In  particular, we look for a boundary-layer 
character, which will leave our inviscid results as valid interior solutions. 

Equations (1)-(5) yield for non-zero v, and the continued assumption 
a/ay = 0 an equation in the stream function that is now 

vV4$t - V2$it - N2$xz = 0. (23) 

We scale this with a length L,  taken to be a local wedge depth, and a time 

t (W), 
(2, 2) = L(2’) z ! ) ,  t = t ’ / X  } (24) 

and R-’V4$f - Q2$fc - $-,,,t = 0, R = NL2/v ,  

where R is a Reynolds number. Let us introduce a co-ordinate rotation 

9 = 

5 = x’cosa-z‘sina 

so that 9 = 0 is a radial line at  angle a within the wedge, The line is taken to be a 
boundary. We have with $ cc e-iut, c = O(1) 

$ = 0. (26) 
a9 a2 a5 1 a 2  a 2  

ar2 - (cos2a + sin2a - + 2 sin a cos a __ 

Depending upon the choice of a, a number of boundary-layer balances are pos- 
sible. a = 0,  corresponds to the top boundary. Here we have a boundary layer 
of thickaess O(R-4). This is an ordinary Stokes boundary layer, governed by 

+ ie7& = 0, 
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fj being a stretched co-ordinate with solution corresponding to the @- waves of 

iq 2 t R-h 
cx‘ a 1 - 2  

$U(Z’,Z’) = -- (-) --_A-exp(-iqln(cz’)+(20-)*(1-i)R%z’}. (27) 

There is an O(R-4) flow into the boundary. Note the intensification as x‘-+O. 
If (a2- sin2a) > O(R-)), then a similar boundary layer is appropriate on the 
slope, yielding a lower boundary layer of form 

I exp [ - iq In (c cos a - sin a)<] c sin a + cos a 
c cos a- sin OL 

When (a* - sinza) < O(R-t), the slope is near critical; there is a balance in the 
equation over a distance R-9, the boundary-layer dynamics being governed by 

- ia$& - 27& = 0. (29) 

The non-separability is reminiscent of a ‘ corner ’. Here a simple analytic expres- 
sion is not obvious. 

As the apex of the wedge is approached, the scale length L begins to approach 
the boundary-layer thickness, and the boundary-layer analysis breaks down. 

5. Three-dimensional refraction 
We will consider the problem of waves at oblique incidence to the ‘beach’, 

limited to the inviscid case. With a three-dimensional dependence, a stream 
function is no longer available. The equation governing the vertical velocity w is 

- (1/c2) (%a! + wyy) = 0, (30) 

c as before. The boundary conditions are now 
w = 0 at  x = 0, 

w = G(x, z )  eQu, 

and yu+w = 0 on z = -p (x >[0). (31) 
Let 

where 

and 1 is constant. This is a Klein-Gordon equation. To solve it, let 

6 = iZ/C 

and G& + ii)3Ex - 1 2 5  = 0. (33) 

If we now let 

and 
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we have 

the ordinmy Helmholtz equation, with solutions 

(34) 

where we have chosen sinvq5 in anticipation of the upper boundary condition. 
I, is the modified Bessel function. Instead of I-,, we could use as a second solu- 
tion 

Rewriting (35) in the original co-ordinate system, we have 

Since tan Q = ix/cx, let 4 = ip, then 

tan@ = i tanhp = iz/cx, 

w = A ,  I&x2 - z2/c2)8] sin [iv(tanh-l z/cx)] e"y. 

tanh-l (z/cx) = 4 In (z + cx) - -&In (cx - z )  

or p = tanh-lz/cx 
and 
Noting that 
we have finally 

w(x ,y ,x )  = A*I*,[I(x2-~2/~2)~]sin [ 4ivln (::s:)j -- e"". (37) 

It remains to impose the boundary conditions. The upper boundary condition 
is clearly satisfied. To satisfy the lower condition requires knowledge of u. The 

( 38) 
equations of motion show 

The absence of an analytic integral for u appears at  the time to preclude the 
exact a,pplication of the boundary condition. Let us note, however, that 

u, = -(1/c2)w X. 

u = O((l/c)w). 

Then to O(y/c) ,  we can replace the exact boundary condition (31) by 

w = O  on z =  -yx ( x > O ) .  
This requires that 

satisfied if 4v  = ilzn/lnA. 
The vertical velocity is then 

Because of the restriction y/c 4 1, In A is small, and the Bessel functions are of 
very high complex order. 
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Asymptotically, as Z(x2 - z2/c2)k + 00, 

which are exponentially growing away from the apex. On the other hand 

which is 

0 i n  20 

5 (arbitrary units) 

FIGURE 6. Line of constant phase along the plane z/c = 0.0, y/c = 0.1. Valid for 
~ ( 5 2  - z2/c2)+ small. 

For small Z(x2 - z2/c2)& we have asymptotically, 

and the lines of constant phase are given by 

+Zy = constant. 

The waves propagating toward the beach are obtained by choosing the - v  
solutions. 

Hence 
__ 1 y = In x2 - - + constant. [$,“ 1 1 ::I (39) 
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For fixed x the phase lines are simply families of logarithmic curves. Two examples 
are shown in figures 6 and 7. 

For l[x2-z2/c2]a large, the asymptotic form for I, given above shows that I, 
is real. Hence the phase lines are simply 

ly = constant. 

The waves are propagating with crests perpendicular to the beach. The y wave- 
number is fixed. As the waves approach the shallower water, the x wave-number 

I 

5 -  

0 

I 

I 
-1 

0 10 20 

LE (arbitrary units) 

FIGURE 7. Lines of constant phase along the plane z/c = 1.0, y/c = 0.1. Valid for 
Z(x2 - z2jc2)* small. Arrow denotes slope intersection. 

starts to grow in such a way that the wave crests are steered more and more 
parallel to the slope. Along z = 0, the x wave-number reaches infinity in the 
corner. The refraction is, of course, very similar to that for surface waves, the 
waves in shallower water moving more slowly than those farther out, swinging 
the crests around parallel to the ' beach '. 

The two-dimensional solutions treated in (I) and above, which were originally 
found by inspection, may be recovered from (34) by noting that in the case 
1 = 0, the solutions are 

G(r, q3) = rfVsin iy5. 

6. Observations 
There are few unambiguous observations of internal waves in the ocean. 

Most of those cases where clear-cut propagation directions have been observed 
(Lee 1961; Gaul 1961) propagation measured on the Continental Shelf has been 
toward the coast. This would be consistent with the picture presented here, 
which indicates that waves approaching the continental slope at  an angle would 
be sharply refracted parallel to it. Of course, the waves could be generated at the 
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edge of the slope; then one would expect them to have crests parallel to the 
continent. 

The two-dimensional supercritical solutions predict a negative phase velocity 
both above and below the critical line, even though the energy flux reverses. No 
energy flux measurements appear to be available. 

< 150 cm - \ 
Plexiglas l i d 7  t , 

PIexiglas 

k 1 2 . 7 5  cm----)l 

FIGURE S. The plexiglass tank used for generating the modes on a wedge. 

0 
0 

o x  
X 0 

X 

2 (cm from corner) 

FIGURE 10. Apparent change in wavelength of the mode generated in figure 9, plate 1. A 
linear relationship appears reasonable far from the generation area. Different symbols 
refer to different instants of time. Wavelengths were arbitrarily referred to mid-points 
between crests. c = 1.68, y = 0.112. 

An attempt to test qualitatively some of the ideas given here in the laboratory 
has been made. A sketch of the apparatus is shown in figure 8. A salt-stratified 
fluid was placed in the wedge-shaped region, and a disturbance generated by the 
plunger a t  the deep end. The Brunt-Vaisala period was approximately 3 sec, 
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and yfc = 0.067. A typical resulting wave-train is shown in figure 9, plate 1, with 
aluminum particles used for tracer. The wave-train appeared to be purely pro- 
gressive, with the motion decaying up-slope. 

Equation (11) indicates that locally the x wavelength dependence of the $- 
modes should be 2n (x2 - 22/c2) A, = - 4 X 

For x2 $ ( Z / C ) ~ ,  this is a linear relation. In  figure 10 is shown the apparent wave- 
length for the case depicted in figure 9, for x/c N 2 .  A roughly linear relation is 
obviously correct for small x. For x large, there is a deviation from linearity, but 
the motion is very complex in the vicinity of the wave-generator. Detailed con- 
firmation of the theory must await more careful experiments. 

This work was supported by the Office of Naval Research under Contract 
Nonr 3963(31) with the Massachusetts Institute of Technology. I would like to 
thank Mr Robert Frazell of the Woods Hole Oceanographic Institution for his 
help with the experiments. 
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